
���
� � � � � � � � � �

Ready in 1 day
forTCP/IP-Sockets

The WinSock Socket Interface

Sample code for linking Com-Servers

TCP/IP Basics

���
� � � � � � � � � �

Introduction
In all likelihood you are a programmer. and you probably have experience already in
linking peripherals – for example through the COM port – into your applications. And
now you‘re interested in linking these devices directly over the network.

Once you have gotten over the initial unfamiliarity with this new material, you‘ll see that
for a programmer the network approach is no more complicated than using the good old
COM port.

You will encounter a few new terms, but on the other hand many of the peculiarities of the
COM link are absent here. So let‘s just get started!

Ready for TCP/IP sockets in 1 day - here‘s how to proceed:

1. First read Part1 – The Socket Interface. This will not only give you a rapid overview,
but also provide you with a lot of important detail information which will make things
easier in the later steps.

2. Now you‘ll already need a „playground“ where you can test out your newly acquired
knowledge. To avoid having to start out with two applications, we recommend you
order a sample Com-Server from us as a test unit, which will then take over the tasks
of the network communications partner (Socket client or server).

(If you are really pressed for time, you can instead try to establish communication
between two computers. This method is more challenging, since you have to get two
programs running at the same time. Unless you have previous experience with such
things, you should probably stay away from this approach.)

3. Now go to Part 2 – Socket-API Programming Examples and select the examples for
your respective programming environment. You can also download the sources including
all the necessary Includes and resource data as well as additional examples for
Windows 9x/NT from our Web site at http://www.WuT.de.

4. By the time you have worked through the programming examples you will have come
across new terms from the network world. But everything you actually need to know
about this terminology is summarized in compact form in Part 3 – TCP/IP-Basics.

Between working with the programming examples and your own experimenting, you will
quickly find that you have acquired all the knowledge you require.

If you still feel the need for a more extensive introduction, we have included a bibliography
at the end of this document.

3

���
� � � � � � � � � �

Contents

Part 1 The Socket Interface
1.1 Client-Server principle .. 5
1.2 Linking socket functions in C ... 5
1.3 The socket variable .. 5
1.4 The main socket functions in C .. 6
1.5 Network order or host order? .. 7
1.6 Database functions ... 8
1.7 Blocking functions ... 8
1.8 Specific functions of the WinSock interface .. 8
1.9 The main structures ... 9
1.10 Streams and datagrams ... 10

Part 2 Program Examples
2.1 C: DOS environment ... 14
2.1.1 Program example: Socket Client ... 14
2.1.2 Program example: Socket Server ... 17
2.1.3 Program example: UDP Server ... 19
2.2 C application environment: Windows 9x/NT ... 22
2.3 The Visual Basic environment .. 27
2.3.1 Integrating Winsock Control with Visual Basic project 27
2.3.2 Explanation of the sample program (TCP Socket Client) 27
2.4 Java application environment ... 29

Part 3 TCP/IP Basics
3.1 IP – Internet Protocol .. 32
3.1.1 The protocol layers of the Internet .. 32
3.1.2 Internet addresses ... 32
3.1.3 The packete format of IP ... 34
3.2 Routing IP packets ... 35
3.3 Subnets ... 37
3.4 ARP and RARP ... 37
3.5 Transport Layer .. 39
3.5.1 Addressing the applications with port numbers .. 39
3.5.2 UDP format ... 39
3.5.3 TCP – Transport Control Protocol ... 40

Bibliography .. 44

���
� � � � � � � � � �

Part 1
The Socket Interface

Client-Server Principle

The Socket Variable

Socket Functions

Host- and Network Order

WinSock-specific Functions

Streams and Datagrams

Client- and Server Applications

5

���
� � � � � � � � � �

1. The Socket Interface
The socket interface, a recent addition to the PC world, was actually developed more than
15 years ago as the „Berkley Socket Interface“ under BSD-UNIX 4.3. This interface
provides relatively easy to use commands to access the functionality of TCP/IP; over the
years it has been incorporated into many other UNIX systems.

In the meantime, WinSock.DLL and with it the functionality of the socket interface has
become a standard component of Windows 9x. It‘s easy to understand the reason for this
interface. Not only does it permit the new development of Internet applications, but also
the moving of applications from UNIX to the PC, since it is for the most part compatible
with Berkley Socket.

1.1 Client-Server principle
Internet applications are created according to the client-server principle. In most cases the
client is here the user interface and makes use of services determined by the server. Based
on previously defined events (e.g. starting of an Internet application by a user), it establishes
the connection to the server and is in that sense the active partner.

The server then makes the desired service available. It must always be in a state in which it
can accept connection requests from clients – which makes it the passive partner. A server
can never request a service from the client.

Client and server have to speak the same language: in other words, they must adhere to a
common protocol.

The different role of client and server does however result in a certain asymmetry which in
turn means that different interface commands need to be used when implementing a client-
or server application.

1.2 Linking socket functions in C
To integrate the functionality of the WinSock interface into your own application, include
the file winsock.h into the C source code using #include <winsock.h> into the C source
code.

The compiler and linker need the LIB file winsock.lib for 16-bit applications or Wsock32.lib
for 32-bit applications in order to generate the program code. Therefore include one of the
two files into your project.

1.3 The socket variable
The socket variable is of the integer type. It has nothing to do with the port number of the
application, as is often assumed, but is simply a handle for a connection. Under this
number various commands are used so that the driver provides all the connection information
which belongs to this handle.

6

���
� � � � � � � � � �

��	
��
����

������	
�����
��

����������

�����

����
�������������������

����
�������������������

�
���
�	
�����
��

�
���
�����

����������	

����
�������

1.4 The main socket functions in C
The extent of WinSock functionalities can vary significantly depending on the reference
source of the development tool. One often comes across a variety of undocumented
functions that no one knows what to do with.

The essential functions of the WinSock interface can be found in the table below. This
listing includes the basic functions which are represented in all versions.

basic functions description

accept permits server program to accept a new connection and returns
a new socket for this connection

bind associates a local Internet address and a port with a socket

closesocket closes an existing socket

connect establishes a connection to a specified socket

getpeername retrieves the IP address of the peer to which the socket is connected

getsockname retrieves the local name for a socket

getsockopt retrieves a specified socket option

ioctlsocket sets socket flags

listen generates queue for incoming connections

recv receives data from connected socket

recfrom receives data and stores the source address

send sends data on a connected socket

sendto sends data to specified address

select determines the status of one or more sockets

shutdown disables sending or receiving of data on a socket

socket creates a new socket

7

���
� � � � � � � � � �

1.5 Network order or host order?
Anyone who has network application programming experience is familiar with that annoying
problem of byte order. The cause of this lies in the system- or architecture-dependent
interpretation of the memory if the latter is not processed byte-for-byte but rather as
WORD or LONG. To make sure an application on an Intel PC can also make use of the
services of an application on a Macintosh for example, a standard had to be found for
sending WORDs and LONGs over the network.

Network order (also referred to as big endian) specifies that the highest byte is sent first and
the lowest byte last.

storage
address

little-endian
(host order)

big-endian
(net order)

little-endian
(host order)

big-endian
(net order)

n+3 31 ... 24 7 ... 0

n+2 23 ... 16 15 ... 8

n+1 15 ... 8 7 ... 0 15 ... 8 23 ... 16

n 7 ... 0 15 ... 8 7 ... 0 31 ... 24

16 bit WORD 32 bit DWORD

Since the memory on all Intel PCs is processed using host order (the low-value byte is
ahead of the high-value byte in the memory), it is necessary to convert all LONG or WORD
type values to network order before handing over to the driver. Likewise all received
values must be converted to host order before they can be used. Caution should be used
when making comparisons: You will not get the same result in both network and host
order!

Here the socket interface provides a variety of conversoin functions. If you take a closer
look at the table you will notice that there is always one function for each direction
(network -> host order and host -> network order). This is actually a duplication, since no
matter which variable you take, it will and must always give you the same result. The only
advantage is in better readability of the program. Based on the command used you can tell
whether the respective value is in host or network order.

converting
functions description

htonl 32 bit integer: host -> network byte order

ntohl 32 bit integer: network -> host byte order

htons 16 bit integer: host -> network byte order

ntohs 16 bit integer: network -> host byte order

inet_addr converts IP address in string format to numerical address (long)

inet_ntoa converts numerical IP address (long) to string format

The functions inet_addr() and inet_ntoa() differ slightly from each other. They convert an
Internet address which exists as a string in Internet Standard Dotted Format into a 32-bit
value (inet_addr()) or vice-versa (inet_ntoa()).

8

���
� � � � � � � � � �

1.6 Database functions
The purpose of these functions is to retrieve information about names, IP addresses,
network addresses and other data from the driver. A user for example enters the target hose
in the dialog box of an application not as an IP address, but rather enters the name of the
station. It‘s impossible to remember all the IP addresses in the Internet. Since names are
easier to recall than numbers, it is customary to use names here.

Database functions take care of things such as converting names into IP addresses and vice-
versa. For this they make use of a domain name server or process local files.

data base
functions description

gethostbyaddr retrieves host name for specified IP address

gethostbyname retrieves IP address for specified host name

gethostname retrieves name of local host

1.7 Blocking functions
All the functions in the socket interface are blocking functions. The blocking effect won‘t
be noticed with database or conversion functions, since these functions always provide an
immediate result. But if you invoke for example the recv() function to receive data from
the socket, it will first return the check if there are actually data to receive.

To get around such blocking effects it is mandatory to invoke the select() function prior to
each read or write action. This tells for a given number of sockets whether data can be sent
or received.

Note also with regard to this problem the WSAAsynSelect() function, a Windows-specific
versoin of select().

1.8 Specific functions of the WinSock interface
The WinSock interface has several functions which are especially adapted to the Windows
environment.

Before a socket function is first invoked, use of the WinSock.DLL must be initialized by the
started process:

WSADATA wsadata;
WSAStartup(MAKEWORD(1,1), &wsadata); //Version 1.1 required

Only after initializing with WSAStartup() can other functions be successfully invoked.
WSAStartup() allows the required version of the DLL to be specified and details about the
implemented DLL stored in the WSDATA structure. Likewise, before ending the process
you must terminate the work with Winsock.DLL. The last function invoked is threfore
always WSACleanup().

9

���
� � � � � � � � � �

Windows-specific
functions description

WSAStartup initialises Windows sockets

WSACleanup frees socket bindings before application terminates

WSAAsyncSelect variant of select() for sockets in asynchronous mode

WSAGetLastError returns error code of last socket call that failed

The use of WSAAsyncSelect() – the asynchronous version of select() – offers many
advantages. This function allows non-blocking work with sockets: it initializes application
messaging using Windows Messages as soon as network events occur for this socket.

The function WSAGetLastError() provides the last error code when a socket is invoked. If
a socket invoke returns the value SOCKET_ERROR, this function must be immediately
invoked.

1.9 The main structures
The socket interface structures appear to be confusing at first glance. But upon closer
inspection it becomes clear that all these structures refer to the same thing – just in a
different form.

/* WINSOCK.H */
struct sockaddr
{ u_short sa_family; // Address-Family (always AF_INET)
char sa_dat[14]; // Address

}
struct sockaddr_in
{ u_short sin_family; // Address-Family (AF_INET)
u_short sin_port; // desired port
struct in_addr sin_addr; // the IP address
char sin_zero[8]; // fills the structure

}

The structures sockaddr and sockaddr_in have the same contents: the address family and
the address itself. Addresses from all the families can be entered in the array sa_dat[14] of
the structure sockaddr. In the Internet the address family is always AF_INET. The structure
sockaddr_in configures this array for Internet addressing format: for the port number and
IP address. You only need 6 bytes for this – which is why you see the 8 unused bytes at
sin_zero[8] at the end of the structure.

/* WINSOCK.H */
struct in_addr
{ union
{ struct { u_char s_b1, s_b2, s_b3, s_b4;}

S_un_b;
struct { u_short s_w1, s_w2; } S_un_w;
u_long S_addr;

} S_un;
}

10

���
� � � � � � � � � �

The structure in_addr contains nothing more than the IP address itself. It simply allows
access to individual components of the IP address without having to form complicated
casts. Depending on the IP network class, you can use this structure to access network and
host ID separately.

/* WINSOCK.H */
struct hostent
{ char FAR *h_name; // String with official host name
char FAR* FAR* h_aliases; // pointer to alternate names
short h_addrtype; // always PF_INET
short h_length; // always 4 (IP address)
char FAR* FAR* h_addr_list; // pointer to array with IP addresses

#define h_addr h_addr_list[0] // for access to the first IP address
};

The structure hostent is important for database functions. Here you find all the supplementary
information for a main information, such as name and additional alternate names for a
given IP address, or all IP addresses associated with a name. Normally there is only one
address for a name; only in the case of multi-homed hosts might you get back multiple IP
addresses.

1.10 Streams and datagrams
When creating a new socket you must decide whether a STREAM socket or a DATAGRAM
socket will be initialized. Lurking behind this is the not insignificant decision between TCP
and UDP. Both protocols have their pros and cons depending on the application.

The usual way is to initialize a STREAM socket, i.e. to use TCP. This relieves you of all the
worries involved with securing and checking the data flow. Note however that if you have
rapidly changing senders and receivers in this case, connections also have to be constantly
made and terminated or many sockets have to be initialized – which costs time and
administration overhead.

UDP is faster, but does not provide any security mechanisms. You will have to use other
means of checking for data integrity.

The two overviews on the following page each shows the initialization of the corresponding
protocol using the socket() command along with the command sequence which has to be
used when implementing client and server applications.

11

���
� � � � � � � � � �

Stream clients and servers (TCP)

Client

socket()
connect()

send()

recv()

closesocket()

Server

socket()

send()

recv()

closesocket()

bind()
listen()

accept()

SOCKET iClient;
iClient = socket(AF_INET, SOCK_STREAM, 0);
if(iClient == INVALID_SOCKET)

{ // Error
int errcode = WSAGetLastError();

}

Datagram clients and servers (UDP protocol)

Client

socket()

sendto()

recvfrom()

closesocket()

Server

socket()

closesocket()

bind()bind()

recvfrom()

sendto()

SOCKET iClient;
iClient = socket(AF_INET, SOCK_DGRAM, 0);
if(iClient == INVALID_SOCKET)
{ // Error

int errcode = WSAGetLastError();
}

���
� � � � � � � � � �

Part 2
Program Examples
Socket-API

DOS Applications in C

Windows 9x Applications in C

Visual Basic

Java

13

���
� � � � � � � � � �

This brief programming reference is devoted specifically to TCP/IP protocol. Here you
will find a short selection of sample programs for various environments (Windows95/C,
DOS/C, JAVA and Visual Basic), which should get you started quicker on your own
application. Have no fear: the socket interface is really quite easy to use. To experience
your first success – in other words: to send or receive data to or from the Com-Server – all
it takes is invoking of a few functions.

All these examples can also be found at our Web site http://www.WuT.de for downloading.

14

���
� � � � � � � � � �

2.1 C: DOS environment

Description of the programming environment

The examples in this section are intended to show in brief form how to create applications
for the Com-Server using the socket interface for the DOS operating system. The programs
can be run under DOS or in the DOS box of Windows and were created for the Novell
TCP/IP stack (LAN Work Place V4.1).

Programming environment of the example:

Programming language: C
Compiler: Microsoft C/C++ Compiler Version 8.0
Linker: Microsoft Segmented Executable Linker Version 5.50
Socket API: Novell’s LAN WorkPlace Windows Sockets

Application Programming Interface (API)

In these examples the module LLIBSOCK.LIB for Large-Model-DOS-Library-Functions
was linked.

2.1.1 Program example: Socket Client

The program tcpclnt.c implements a TCP client. When invoking the program the IP
address of the Com-Server is given in dot notation (e.g. 190.107.231.1) or the name of the
Com-Server is given as an argument.

The program establishes a connection to port A of the desired Com-Server, displays all the
received data on the monitor and sends all keyboard entries to Com-Server port A after the
Enter key is pressed.

The terminal() function implements the functionality of a terminal (data in- and output).

/**
*** tcpclnt.c ***
*** TCP Client-Program: Terminal-Function ***
*** Quit program with ALT Q ***
**/
#include <stdio.h>
#include <conio.h>
#include <nw/socket.h>
#define TCP_PORT_A 8000
#define BUF_SIZE 512
char SendBuf[BUF_SIZE];
char RecBuf [BUF_SIZE];

void terminal(int);

void main (int argc,char **argv)
{
int sd; //socket descriptor
struct sockaddr_in box; //Com-Server address
int portno = 8000; //predefine Com-Server port A
char *hostname;
u_long remote_ip;

15

���
� � � � � � � � � �

if(!loaded()) //TCP/IP-Stack installed?
{ printf("Kein TCP/IP protocol stack active\n");
exit (1);

}
if(argc < 2) //get host name from argument
{ printf("No host name given\n");
exit (1);

}
if(argc > 2) //port number may be 2nd parameter
portno = atoi(argv[2]);

bzero((char *)&box,sizeof(box));//delete address structure
hostname = argv[1]; //rhost() expects (char**)-Argument!
if((remote_ip = rhost(&hostname)) == -1)
{ printf("Unknown host name\" %s\"\n", argv[1]);
exit(1);

}

//open handle for TCP-Transport
if((sd = socket(PF_INET,SOCK_STREAM, 0)) < 0)
{ soperror("socket");
exit(1);

}

box.sin_family = AF_INET;
box.sin_port = htons(portno); //destinnation port number
box.sin_addr.s_addr = rhost(&hostname); //destination IP address

//open connection to COM-Server Port A
if(connect (sd, (struct sockaddr*)&box,
sizeof(box)) < 0)
{ soclose(sd); //close handle again
soperror("connect");
exit(1);

}

//receive and send data until ALT Q pressed
printf("Linked to COM-Server %s:%d\n", inet_ntoa(box.sin_addr),

htons(box.sin_port));

terminal();
soclose(sd); //close handle again

}

void terminal(void)
{
fd_set rd_ready,wr_ready; //bit fields per socket descriptor
struct timeval maxwait; //Max. wait time for select()
int s_len = 0;
int r_len = 0;
int z_count = 0;
char key;
for(;;)
{

16

���
� � � � � � � � � �

FD_ZERO(&rd_ready); //The API should let us wait for max. 10µs.
FD_SET (sd,&rd_ready); //select() indicates the number of active
FD_ZERO(&wr_ready); //connections and sets for each active
FD_SET (sd,&wr_ready); //connection one bit in the transfered
maxwait.tv_sec = 0; //bit fields. Return 0: no data
maxwait.tv_usec = 10; //received and no send possible

if(select(sd+1,&rd_ready,&wr_ready,
(fd_set*)0,&maxwait) == 0) continue;

if(FD_ISSET(sd, &rd_ready)) //data ready?
{ if((r_len=soread(sd, RecBuf, BUF_SIZE))>0)
{ *(RecBuf[r_len]) = 0 //mark string end
printf("%s",RecBuf); //output data to monitor

}
else if(r_len == 0) //regular connection break
{ printf("\nCOM-Server has ended the connection\n");
return;

}
else if(r_len <= 0) //connection error
{ soperror("soread");
return;

}
}

if(kbhit()) //read keyboard inputs
{ key = getch();
if(!key) // special character
{ if(getch()==16) // ALT Q -> quit terminal
{ printf("\n");
return;

}
}

else
{ SendBuf[z_count++] = key;
if(key==0x0D) //ENTER->send line to Com-Server
{ SendBuf[z_count++] = 0x0A;
s_len = z_count;
z_count = 0;

}
}

}
//as soon as an input line is complete (and the API is ready),
//send line:
if(s_len > 0 && FD_ISSET(sd, &wr_ready))

{ if(sowrite(sd, SendBuf, s_len) < 0)
{ soperror("sowrite()");
return;

}
s_len = 0;

}
}

}

17

���
� � � � � � � � � �

2.1.2 Program example: Socket Server

The program tcpserv.c implements a TCP server on Socket 2000. The Com-Server is also
run here in „Socket Client Mode“: If there are data present on the serial interface, the Com-
Server establishes a connection to a server program and gives it the data for processing.

This program outputs all received data on the monitor and sends all keyboard inputs to the
corresponding port of the Com-Server after pressing the ENTER key.

The terminal() function for implementing the functionality of a terminal was already
discussed in the preceding section.

/**
*** tcpserv.c ***
*** TCP Server-Program: Terminal Function ***
*** To close a connection press ALT Q ***
*** Quit Server Mode with ESC ***
**/

#include <stdio.h>
#include <conio.h>
#include <nw/socket.h>
#define SERV_SOCKET 2000 //server port
#define BUF_SIZE 512

char SendBuf[BUF_SIZE];
char RecBuf [BUF_SIZE];
void terminal(int sd);

void main (void)
{
int sd,ss; //socket descriptors
struct sockaddr_in box,loc; //addresses of Com-Server and PC
int box_size = sizeof(box);
fd_set rd_ready; //flags
struct timeval maxwait; //max. wait time for select()
bzero((char *)&loc, sizeof(loc)); //delete address structures
bzero((char *)&box, sizeof(box));
if(!loaded()) //TCP/IP stack installed?
{ printf("No TCP/IP stack active\n");
exit (1);

}

// open handle for TCP transport
if((ss = socket(PF_INET, SOCK_STREAM, 0)) < 0)
{ soperror("socket()");
exit(1);

}
loc.sin_family = AF_INET;
loc.sin_port = htons(SERV_SOCKET);
loc.sin_addr.s_addr = getmyipaddr(); //"0" would also be permitted

18

���
� � � � � � � � � �

// link socket ss to a "Name" (IP address and port)
if(bind (ss, (struct sockaddr*)&loc, sizeof(loc)) < 0)
{ soclose(ss); //close handle again
soperror("bind()");
exit(1);

}

if(listen (ss, 1) < 0) //accept connection requests,
{ //queue limit=1
soclose(ss);
soperror("listen()");
exit(1);

}
printf("Server ready: %s:%d\n",

inet_ntoa(loc.sin_addr),
htons(loc.sin_port));

for(;;) //wait for connections
{
if(kbhit() && getch()==27)
break; //ESC quits server mode

FD_ZERO(&rd_ready); FD_SET(ss, &rd_ready);
maxwait.tv_sec = 0; maxwait.tv_usec = 10;

//ask API if data were received
if(select(ss+1, &rd_ready, NULL, NULL, &maxwait) == 0)
continue;

//accept connection and store client address in the structure "box"
if((sd = accept(ss, (struct sockaddr*)&box, &box_size)) < 0)
{ soclose(ss);
soperror("accept()");
exit(1);

}

printf("Connection from %s:%d accepted.\n",
inet_ntoa(box.sin_addr),htons(box.sin_port));

//invoke terminal function for data exchange until the client ends
//the connection or ALT Q is pressed
//(see "Terminal" function in example 2.2.2)
terminal(sd);
soclose(sd); //close connection to client
printf("Socket closed\n");

} //wait for the next server invoke
soclose(ss); //disable server socket

}

19

���
� � � � � � � � � �

2.1.3 Program example: UDP Server

The program udpserv.c implements a UDP server on Socket 2000. The Com-Server is
configured in „UDP Mode“ and sends all serial data to this UDP server.

UDP provides no connection control. You should only work with UDP if the data
between the serial terminal device and your final application have already been sent
using a protocol which itself provides for error-free data transfer.

The program udpserv.c outputs all received data on the monitor, and after ENTER is pressed
sends all keyboard inputs to the Com-Server port from which data were last received.

/**
*** udpserv.c ***
*** UDP Server-Programm: Terminal Function ***
*** Quit program with ALT Q ***
**/
#include <stdio.h>
#include <conio.h>
#include <nw/socket.h>
#define SERV_SOCKET 2000 //server port
#define BUF_SIZE 512

char SendBuf[BUF_SIZE];
char RecBuf [BUF_SIZE];

void main (void)
{
int sd; //socket descriptor
struct sockaddr_in box; //structure Com-Server Port
struct sockaddr_in loc; //structur PC
struct timeval maxwait; //time to wait for API
fd_set rd_ready,wr_ready; //flags for select()
int s_len = 0;
int r_len = 0;
int z_count = 0;
int boxlen = sizeof(box);
char key;

bzero((char *)&loc, sizeof(loc)); //delete address structures
bzero((char *)&box, sizeof(box));
if(!loaded()) //TCP/IP stack installed?
{ printf("No TCP/IP protocol stack active\n");
exit (1);

}
//open handle for UDP transport
if((sd = socket(PF_INET, SOCK_DGRAM, 0)) < 0)
{ soperror("socket()");
exit(1);

}
loc.sin_family = AF_INET;
loc.sin_port = htons(SERV_SOCKET);
loc.sin_addr.s_addr = getmyipaddr(); //"0" would also be permitted
box.sin_family = AF_INET;

20

���
� � � � � � � � � �

//attach socket sd to a "Name"(IP address and port):
if(bind (sd, (struct sockaddr*)&loc, sizeof(loc)) < 0)
{ soclose(sd); //close handle again
soperror("bind()");
exit(1);

}
printf("UDP-Server ready: %s:%d\n", inet_ntoa(loc.sin_addr),

 htons(loc.sin_port));
for(;;) //wait for data
{ FD_ZERO(&rd_ready); FD_SET(sd, &rd_ready);
FD_ZERO(&wr_ready); FD_SET(sd, &wr_ready);
maxwait.tv_sec = 0;
maxwait.tv_usec = 10; //the API should block for a maximum of 10µs

//select() indicates the number of active connections and sets for each
//active connection a bit in the transfered bit fields. return value 0:
//no data received and at the moment no data are being sent.

if(select(sd+1, &rd_ready, &wr_ready, NULL, &maxwait) == 0)
continue;

//receive data and store sender in structure "box"
if(FD_ISSET(sd, &rd_ready))
{ if((r_len = recvfrom(sd, RecBuf, BUF_SIZE, 0, (struct sockaddr*)&box,

&boxlen)) > 0)
{ RecBuf[r_len] = 0; //mark end of string
printf("Data from %s:%d: %s\n", inet_ntoa(box.sin_addr),

 htons(box.sin_port), RecBuf);
}

else //connection error
{ soperror("recvfrom()");
goto quit;

}
}

if(kbhit()) //read keyboard inputs
{ key = getch();
if(!key) //special character
{ if((char)getch()==16) //ALT Q -> quit Terminal

goto quit;
}

else if(box.sin_port) //Com-Server port known?
{ SendBuf[z_count++] = key;

if(key==0x0D) //ENTER -> send line
{ SendBuf[z_count++] = 0x0A;
s_len = z_count;
z_count = 0;

}
}

else
printf("Send to whom?\n");

}

21

���
� � � � � � � � � �

//Were characters read from the keyboard and ist the API ready to send?

if(s_len > 0 && FD_ISSET(sd, &wr_ready))
{ if(sendto(sd, SendBuf, s_len, 0,

(struct sockaddr*)&box, sizeof(box)) < 0)
{ soperror("sendto()");
goto quit;

}
s_len = 0;

//set character number to zero
}

} //End for(;;)
quit:
soclose(sd);
exit(1);

}

22

���
� � � � � � � � � �

2.2 C application environment: Windows 9x/NT

Description of programming environment

This application for Windows 9x or Windows NT implements a TCP client and enables
data exchange with the Com-Server. This example shows handling of the socket interface
using Windows Messages.

System requirements:

• Microsoft Windows 9x or Windows NT

• Microsoft Visual C++ 5.0 or higher

• Microsoft Windows TCP/IP-Stack (32 bit)

Programming environment for the example:

Programming language: C

Compiler: 32 bit edition of Visual C/C++ 5.0

/***
* *
* clnt_tcp.c (Win32 Application) *
* Microsoft Visual C++ 5.0 *
* *
**
* TCP Client: The client opens the connection to the TCP *
* server whose address or name is entered in the dialog box. *
* All the data entered in the "Send" field are sent to the *
* server, all received data aare output in the "Receive" window. *
* The status window displays those WinSock functions which *
* were just carried out. *
***/

#include <winsock.h> //include also windows.h!
#include <stdio.h>

#include "resource.h" //dialog box constants
#define WM_SOCKET (WM_USER + 1) //private windows messages
#define SERVER_PORT 8000 //Com-Server port A

SOCKET iClient = INVALID_SOCKET;

/* log status messages*/
void ShowStatus(HWND hWnd, LPSTR lpMsg)
{
int iEntries;
//add new entry
SendMessage(GetDlgItem(hWnd, IDC_STATUS),

 LB_ADDSTRING, (WPARAM)-1,(LPARAM)lpMsg);
//show last entry
iEntries = SendMessage(GetDlgItem(hWnd,IDC_STATUS), LB_GETCOUNT, 0, 0);
SendMessage(GetDlgItem(hWnd, IDC_STATUS), LB_SETTOPINDEX, iEntries-1, 0);

}

23

���
� � � � � � � � � �

/* dialog procedure of main dialog*/

BOOL WINAPI WSClientProc(HWND hWnd, UINT msg, WPARAM wP, LPARAM lP)
{
switch(msg)
{
case WM_INITDIALOG: //dialog box initialized
SetWindowText(GetDlgItem(hWnd, IDC_DESTADDRESS), "box");
break;

case WM_SOCKET: //WINSOCK-Messages
{
switch(WSAGETSELECTEVENT(lP))
{
case FD_CONNECT: //message from connect()
ShowStatus(hWnd, "FD_CONNECT");
if(WSAGETSELECTERROR(lP) == 0)
{
EnableWindow(GetDlgItem(hWnd, IDC_CLOSE), TRUE);
EnableWindow(GetDlgItem(hWnd, IDC_CONNECT), FALSE);
EnableWindow(GetDlgItem(hWnd, IDC_SEND), TRUE);

}
else
{ closesocket(iClient);
iClient = INVALID_SOCKET;
ShowStatus(hWnd, "Kein Server!");
EnableWindow(GetDlgItem(hWnd, IDC_CONNECT), TRUE);
EnableWindow(GetDlgItem(hWnd, IDC_CLOSE), FALSE);
EnableWindow(GetDlgItem(hWnd, IDC_SEND), FALSE);

}
break;

case FD_READ: //receive data
{ char rd_data[255];
int iReadLen; //read data
ShowStatus(hWnd, "FD_READ");
iReadLen = recv(iClient, rd_data, sizeof(rd_data)-1, 0);
if(iReadLen > 0)
{ rd_data[iReadLen] = 0;
SendMessage(GetDlgItem(hWnd, IDC_RECEIVE), LB_ADDSTRING,

(WPARAM)-1, (LPARAM)rd_data);
}

}
break;

case FD_CLOSE: //connection break
ShowStatus(hWnd, "FD_CLOSE");
EnableWindow(GetDlgItem(hWnd, IDC_SEND), FALSE);
EnableWindow(GetDlgItem(hWnd, IDC_CONNECT), TRUE);
EnableWindow(GetDlgItem(hWnd, IDC_CLOSE), FALSE);
closesocket(iClient);
iClient = INVALID_SOCKET;

break;
}

}
break;

24

���
� � � � � � � � � �

case WM_COMMAND: //button messages
switch(LOWORD(wP))
{ case IDCANCEL: //close window box

EndDialog(hWnd, 0);
break;

case IDC_SEND: //send data
if(iClient != INVALID_SOCKET)
{
char Buffer[255];
int iSendLen;
ShowStatus(hWnd, "FD_WRITE"); //read server address
iSendLen = GetWindowText(GetDlgItem (hWnd,IDC_SENDDATA),

Buffer, sizeof(Buffer));
ShowStatus(hWnd, "send()...");

if(send(iClient, Buffer, iSendLen, 0) != SOCKET_ERROR)
{ ShowStatus(hWnd, "... ready");
EnableWindow(GetDlgItem(hWnd, IDC_SEND), TRUE);

}
else
{ if(WSAGetLastError() == WSAEWOULDBLOCK)

ShowStatus(hWnd, "... blocked");
else
ShowStatus(hWnd, "send error()");

ShowStatus(hWnd, "closesocket()");
EnableWindow(GetDlgItem(hWnd, IDC_SEND), TRUE);
closesocket(iClient);
iClient = INVALID_SOCKET;
ShowStatus(hWnd, "Cancel");

}
}
break;

case IDC_CONNECT:
{ SOCKADDR_IN sin;
char remoteIP[64];
char Buffer[80];

//read out destination address
GetWindowText(GetDlgItem(hWnd, IDC_DESTADDRESS),

 remoteIP, sizeof(remoteIP));
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(SERVER_PORT);
//IP address-> dot-Notation
ShowStatus(hWnd, "inet_addr()");
sin.sin_addr.s_addr = inet_addr(remoteIP);
//resolve address through DNS
if(sin.sin_addr.s_addr == INADDR_NONE)
{ HOSTENT *he;
ShowStatus(hWnd, "gethostbyname()");
he = gethostbyname(remoteIP);
if(he)
sin.sin_addr.s_addr = *((DWORD*)he->h_addr);

25

���
� � � � � � � � � �

else
{ ShowStatus(hWnd, "Invalid Internet address");
break;

}
}

//log destination address
wsprintf(Buffer, "Adresse: 0x%08lx", ntohl(sin.sin_addr.s_addr));
ShowStatus(hWnd, Buffer);

//create socket
ShowStatus(hWnd, "socket()");
iClient = socket(AF_INET, SOCK_STREAM, 0);
if(iClient == INVALID_SOCKET)
{ ShowStatus(hWnd, "Error when allocating connect socket");
ShowStatus(hWnd, "No connection can be established");
break;

}

//activate asynchronous mode
ShowStatus(hWnd, "WSAAsyncSelect()");
if(WSAAsyncSelect(iClient,

hWnd,
WM_SOCKET,
FD_CONNECT |
FD_READ |
FD_CLOSE) == 0)

{ ShowStatus(hWnd, "connect()");
if(connect(iClient,(SOCKADDR*)&sin,sizeof(sin)) == SOCKET_ERROR)
{ if(WSAGetLastError() == WSAEWOULDBLOCK)
{ ShowStatus(hWnd, "Wait...");
//deactivate "Send" button
EnableWindow(GetDlgItem(hWnd, IDC_SEND),FALSE);
break;

}
}

}
else
ShowStatus(hWnd, "Error with WSAAsyncSelect()");

ShowStatus(hWnd,"closesocket()");
closesocket(iClient);
iClient = INVALID_SOCKET;

}
break;

case IDC_CLOSE:
ShowStatus(hWnd,"closesocket()");
closesocket(iClient);
iClient = INVALID_SOCKET;
EnableWindow(GetDlgItem(hWnd, IDC_CLOSE), FALSE);
EnableWindow(GetDlgItem(hWnd, IDC_CONNECT), TRUE);
EnableWindow(GetDlgItem(hWnd, IDC_SEND), FALSE);
break;

}
break; //end "case WM_COMMAND"

26

���
� � � � � � � � � �

case WM_DESTROY: //close window
if(iClient != INVALID_SOCKET)
closesocket(iClient); //close socket

break;
}

return FALSE;
}

/**
* WinMain: Main entry point *

* Parameters:Standard dialog parameters *
* Return value: 0 *
**/

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nShowCmd)

{
WSADATA wsadata; //Version 1.1 of the Winsock-DLL

if(WSAStartup(MAKEWORD(1,1), &wsadata) == 0)
{
DialogBox(hInstance, //show dialog

MAKEINTRESOURCE(IDD_WSCLIENT),
NULL,
WSClientProc);

WSACleanup(); //clean up Winsock-DLL
}
else MessageBox(0,

"Error when initializing WINSOCK.DLL",
"WSClient.EXE", 0);

return 0;
}

27

���
� � � � � � � � � �

2.3 The Visual Basic environment

Description of the programming environment

This example shows how you can create a TCP-Client application for the Com Server using
a Socket interface in Visual Basic. The MS Winsock control element is used, which is
included standard with Visual Basic Version 5.

System requirements:

• Microsoft Windows 95, 98 or NT 4.0

• Visual Basic 5.0 or higher

• Microsoft Windows TCP/IP-Stack

Programming environment for the example:

Programming language: Visual Basic

Compiler: Visual Basic 5.0 (32 bit)

TCP/IP-Control: Microsoft Winsock Control 5.0

2.3.1 Integrating Winsock Control with Visual Basic project

The MS Winsock Control enables communication through TCP/IP or UDP/IP, whereby
TCP allows both client as well as server applications.

The Winsock Control must first be added to the VB project you wish to create as a new
component.. Go to Projects->Components ... to find the selection of all optional control
elements.. Select the item „Microsoft Winsock Control 5.0“ and confirm your selection
with OK. Now you can add the control element to the project using the Winsock icon in the
Tools collection. By default the names Winsock1, Winsock2 etc. are assigned.

After completing this step the communication path through TCP/IP protocol is available to
the new program. The necessary steps and functions for connection and disconnection as
well as for sending and receiving payload data are explained using the following short TCP
client program as an example..

A description of all properties, methods and events related to the Winsock Control is
available using the online help function of Visual Basic. Simply select the Control in your
project and press F1.

2.3.2 Explanation of the sample program (TCP Socket Client)

The program implements a TCP client which establishes a connection with the TCP server
indicated in the text fields. Then all entered characters are sent to the server while incoming
characters from the network are represented in the text window.

Note: The following demo program is intended only to clarify the basic structure of TCP
client applications (establishing the connection -> data exchange -> terminating the
connection). Your own programs will have to be expanded as necessary especially with
respect to controlled data transfer using the "Send Complete" event as well as error
handling.

28

���
� � � � � � � � � �

"Connect" button, establishing and terminating the connection
Private Sub connect_Click()
If Winsock1.State = sckClosed Then ‘If there is no connection ...
Winsock1.RemoteHost = IP_Nr.Text ‘determine target IP address
Winsock1.RemotePort = Val(Port_Nr.Text) ‘determine target port no.
Connect.Enabled = False ‘deactivate Connect button
TCPSocketCLIENT.MousePointer = 11 ‘mouse pointer = sandglass
Winsock1.Connect ‘Open the connection

Else ‘If already open,
Winsock1.Clos ‘close the connection
Winsock1.LocalPort = 0 ‘set local port no. to 0
Connect.Caption = "Connect"

End If
End Sub

"Connect" event, connection to server was successfully established
Private Sub Winsock1_Connect() ‘Connection successfully established
Terminal.SetFocus
Connect.Caption = "Disconnect"
Connect.Enabled = True ‘activate Connect button
TCPSocketCLIENT.MousePointer = 0 ‘Set mouse pointer to standard

End Sub

Send characters over the network to the TCP server
Private Sub terminal_KeyPress(KeyAscii As Integer)
If Winsock1.State = sckConnected Then ‘If there is a connection...
Winsock1.SendData Chr$(KeyAscii) ‘Send characters
KeyAscii = 0

End If
End Sub

Receive characters over the network from the TCP server
Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)

‘Event"Receive data"
Winsock1.GetData strData$ ‘Read into string variable
variableTerminal.Text = Terminal.Text + strData$

‘Display in terminal window
End Sub

Error handling and outputting returned error text
Private Sub Winsock1_Error(ByVal Number As Integer, Description As String, _

ByVal Scode As Long, ByVal Source As String, _
ByVal HelpFile As String, ByVal HelpContext As Long, _
CancelDisplay As Boolean)

MsgBox Description ‘Display message box with error string
Winsock1.Close ‘Close TCP connection
Connect.Enabled = True ‘Activate Connect button
TCPSocketCLIENT.MousePointer = 0 ‘Set mouse pointer to standard

End Sub

29

���
� � � � � � � � � �

2.4 Java application environment

Description of programming environment

This example shows how a simple Java application is constructed for the COM server. The
program can be run under Windows in the DOS box using a Java interpreter. The requirement
is that the MS Windows TCP/IP stack is installed.

Programming environment for the example:

System: Windows 9x

TCP/IP-Stack: Microsoft Windows TCPIP-Stack

Programming language: Java 1.3

Compiler: Borland JBuilder 4.0

/***/
/* ComportTcp.java Win32 Application */
/* Borland JBuilder 4.0 */
/***/
/* Sample program for a client */
/* The IP address for the server must be transmitted as */
/* a parameter at program start. */
/* - Entries must be confirmed with <RETURN>. */
/* - Received data are output in bytes. */
/* - Receipt is processed by a separate thread. */
/* - The program is ended with x+<ENTER>. */
/***/

//Java Library Packages
import java.io.*; //classes for file I/O
import java.net.*; //classes to perform low-level Internet I/O

class ComportTcp
{ public static void main(String[] args)
{ try
{ if(args.length < 1)
{ System.out.println("Call: ComportTcp <IP-Address>");
return;

}
String strAddress = args[0]; // COM-Server IP-Address
int iPort = 8000; // COM-Server Port A (TCP)

System.out.println("Server IP-Address: " + strAddress);

Socket socket = new Socket(strAddress, iPort);
DataInputStream incoming = new DataInputStream(socket.getInputStream());
DataOutputStream outgoing = new DataOutputStream(socket.getOutputStream());

System.out.println("");
System.out.println("Start receive thread! End Session: x+<ENTER>");
System.out.println("--");

30

���
� � � � � � � � � �

new ThreadedReadStreamHandler(incoming).start();

boolean more = true;
while(more)
{ int i = System.in.read(); //Get characters from stream
if(i != 0x78)
{ outgoing.write(i); //and send to COM port
}

else
{ more = false; //End with ESC
}

}
socket.close();
outgoing.close();
System.out.println("Exit");

}
catch(IOException e)
{ System.out.println("Error" + e);
}

}
}

class ThreadedReadStreamHandler extends Thread
{ DataInputStream incoming;
boolean more = true;
ThreadedReadStreamHandler(DataInputStream i)
{ incoming = i;
}

public void run()
{ try
{ byte[] b = new byte[1];
while(more)
{ b[0] = incoming.readByte(); // receive bytes from the stream
System.out.write(b, 0, 1); // send bytes to the standard output

}
incoming.close();

}
catch(Exception e)
{

 }
}

}

���
� � � � � � � � � �

Part 3
TCP/IP Basics

The Internet Protocol

The IP Address

Network Classes

Routing

Subnets

UDP and TCP Protocols

32

���
� � � � � � � � � �

3.1 IP – Internet Protocol
The Internet Protocol defines the basis of data communication on the lowest level. It
allows, regardless of the physical medium used, various network and hardware architectures
to be merged into a uniform network.

The Internet Protocol handles data transmission by means of a connectionless, non-secure
transport medium. Security mechanisms are the responsibility of higher-order protocols
such as TCP.

Basic elements for cross-network communication:

• Addressing mechanism for giving sender and receiver an unique identity

• Concept for transporting data packets through nodes (routing)

• Format for data exchange (defined header with important information)

3.1.1 The protocol layers of the Internet

FTP TELNET TFTP

Transport Medium: Ethernet, SLIP, PPP, ect.

SOCKET INTERFACE

Web

TCP UDP

ICMP IP

RARP

ARP

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Hardware
Control

3.1.2 Internet addresses

Each host in the Internet has an address which is unique in the world. This IP address is a
32-bit value which for ease of reading is generally represented in dot notation, i.e., bytes
separated by periods.

33

���
� � � � � � � � � �

172.16.231.8

 10101100 00010000 11100111 00001000

Net ID: 44048 Host ID: 59144

32 bit address:Dot Notation:

Class B Net

decimal:
 2 886 788 872

hexadecimal:
 0xAC10E708

The IP address is divided into the network and the host ID. How many bits are used
respectively for the network ID and the host ID depends on the class of the IP network.
This network class can – as shown in the table below – be read off from the highest address
bits:

31 24 16 8 0

Class A 0 Net ID Host ID

Class B 1 0 Host ID

Class C 1 1 0 Net ID Host ID

Class D 1 1 1 0 multicast address

Class E 1 1 1 1 0 reserved for future use

The following address spaces are derived according to the definition of the network
classes:

Class Lowest Net ID Highest Net ID

A 0.1.0.0 126.0.0.0

B 128.0.0.0 191.255.0.0

C 192.0.1.0 223.255.255.0

D 224.0.0.0 239.255.255.255

E 240.0.0.0 247.255.255.255

Generally however only IP addresses for Classes A through C are assigned. You will likely
never come into contact with Classes D and E: Class D includes networks for multicasting,
and Class E is reserved for research purposes.

34

���
� � � � � � � � � �

The following Internet addresses have a special meaning and are not allowed to be assigned
as an Internet host address:

all bits 0

all bits 1

01111111

all bits 0

all bits 1

all bits 1

host ID

net ID

° addresses present host with

° addresses host with this host ID
 network ID and host ID

 in present network
° broadcast in local network

° broadcast in network given by net ID

° loopback within TCP/IP protocol software
 (for testing purposes)

only for startup
(no valid Internet
addresses)

3.1.3 The packete format of IP

A datagram consists of a packet head (Header) and the Data Area. The Header contains
information about the datagram; here you will find for example the addresses of the sender
and receiver, routing information, the number of the higher-order protocol for passing on
the datagram, as well as special options.

 datagram header

format of IP datagram header:

0 4 8 16 19 31

VERS HLEN SERVICE TYPE TOTAL LENGTH

IDENTIFICATION FLAGS FRAGMENT OFFSET

TIME TO LIVE PROTOCOL HEADER CHECKSUM

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

IP OPTIONS (IF ANY) PADDING

DATA AREA

......

 datagram data area

version: Binary coded version of the IP protocol (currently 4.0)
hlen: Length of the header in DWORDs (32-bit)
service type: Priority of a packet and features of the desired transmission path
total length: Total length of the IP packet including header and actual data in

bytes (8-bit)
identification: Value set by sender for identifying the individual fragments
flags (3-bit) : Bit 2: Fragmenting allowed 0=yes, 1=no; Bit 3: 0=last fragment,

1=more fragments to follow

35

���
� � � � � � � � � �

time to live: Counter which is decremented at each router. Once the value 0 is
reached the packet is rejected.

protocol: No. of the higher-order protocol (e.g. TCP=6, UDP=17, ...)
header checksum: Just what it says
source IP address: IP address of the sender
destination IP addr.: IP address of the receiver
IP options (variab.): IP options if needed
padding: Filler bytes for bringing the header length up to a multiple of

DWORDs

36

���
� � � � � � � � � �

3.2 Routing IP packets
Routing is the transport of a datagram from the sender to the receiver. A distinction is made
between direct and indirect routing. Direct routing takes place within a local network,
whereby no router is needed. Indirect routing takes place between two statoins in different
networks, with the sender passing the IP packet on to the next router.

Whether the packet has to be routed directly or indirectly is easy to decide: The software
compares the net ID of the destination with the „real“ net ID; if they are not identical, the
packet is handed off to the router.

ETHERNET 128.10.0.0

 Ethernet host
multi homed

token ring host

ROUTER

ASTERIX
OBELIX

IDEFIX TROUBADIX MIRACULIX

MAJESTIX

host

128.10.2.3

128.10.2.70

128.10.2.26128.10.2.8

TOKEN
RING

192.5.48.0
192.5.48.6

192.5.48.1

192.5.48.7 10.0.0.37

to ARPANET

192.5.48.3

 Ethernet host

ROUTER

The illustration above shows an example of a network containing hosts and routers. The
host IDEFIX is a „muti-homed host“: it has access to multiple networks (for example
through two Ethernet cards) but does not have any router software.

The hosts IDEFIX, TROUBADIX and MIRACULIX belong to a Class B network
(129.10.0.0). The token ring network is a Class C network (192.5.48.0) which is linked to
the Arpanet (Class A network 10.0.0.0) thorugh the router OBELIX.

37

���
� � � � � � � � � �

3.3 Subnets
If a local network is insufficient or too cumbersome due to its size (such as Class A
networks having over 16 million hosts), it is subdivided into smaller networks, so-called
subnets. Different network technologies in the individual departments, limitations with
respect to cable length and the number of connected stations, as well as performance
optimization are other reasons for subdividing networks into smaller segments.

Since the structure of the IP address does not allow for fitting this additional coding into the
address itself, the subnet mask had to be created. It defines which bits of the host ID are to
be used for coding the subnet ID and which define the host ID.

The subnet mask is determined by the administrator and represented in dot notation (e.g.
255.255.255.128) just like the ID address.

When subnets are formed the routing algorithm has to be expanded, since the net ID of the
receiver can be identical to that of the current host, even though each resides in a different
local network.

Binary operations with the Subnet Mask:

Host-ID = IP-Address AND(NOT(Subnet-Mask))

Net-IDS = IP-Address AND Subnet-Mask
(combination of Net- and Subnet-ID)

Subnet-ID: Set the Net ID in the Net IDS to 0

Example: values of a class B net IP address

IP address: 172.16.233.200 10101100 00010000 11101001 11001000

subnet mask: 255.255.255.128 11111111 11111111 11111111 10000000

host ID: 72 00000000 00000000 00000000 01001000

net ID: 172.16.0.0 10101100 00010000 00000000 00000000

net IDS: 172.16.233.128 10101100 00010000 11101001 10000000

subnet ID: 0.0.233.128 00000000 00000000 11111111 10000000

38

���
� � � � � � � � � �

3.4 ARP and RARP
ARP and RARP (the latter is used only under UNIX) provide mechanisms for mapping IP
addresses to the physical network addresses which one needs for direct routing. Each
hardware-based protocol (Ethernet, X.25,k ISDN ...) has its own address format and
doesn‘t understand IP addresses. If the target does not reside in the local network, you need
the physical address of the router which will hand the packet over to another network.

RARP-Request: I give my physical address.
Who knows my IP address?

Beispiel: Sender hardware address: 0x00C03D002AD9
Sender IP address: 0.0.0.0
Target hardware address: 0xFFFFFFFF
Target IP address: 255.255.255.255

REQUEST to all

Example: Sender hardware address: 0x00C03D004A05
Sender IP address: 172.16.231.64
Target hardware address: 0x00C03D2AD9
Target IP address: 172.16.231.12

RESPONSE to sender:

ARP/RARP response:

ARP Request: To whom belongs the IP address 172.16.231.64?

Example: Sender hardware address: 0x00C03D002AD9
Sender IP address: 172.16.231.12
Target hardware address: 0xFFFFFFFF
Target IP address: 172.16.231.64

RARP-Daemon
is active on
this host

0x00C03DFF67E9
172.16.231.8

0x00C03D000D61
172.16.231.7

0x00C03D002AD9
172.16.231.12

0x00C03D004A05
172.16.231.64

0x00C03D002AD9
172.16.231.12

0x00C03D004A05
172.16.231.64

The Ethernet address and IP address assignment is stored in a table and only deleted after
a timeout.

Note: If you change this assignment (such as by assigning the same IP address to interchange
device), you may no longer have a connection to the target. If the „arp“ command is
not available, the only remedy is to reboot the computer or to assign a new IP address.

39

���
� � � � � � � � � �

3.5 Transport Layer

3.5.1 Addressing the applications with port numbers

The IP address addresses the host and only the host. But each host can have more than one
application running at the same time, such as a Web browser, a Telnet client and so on. The
necessary mechanisms for addressing the applications are provided by the TCP and UDP
protocols.

Internet Applications

Web Server FTP Server Telnet Client
Port 80 Port 21 Port 1028

IP
:

17
2.

16
.2

31
.8

P
o

rt
 1

02
8

Internet IP: 172.16.231.8
Port 80

IP: 172.16.231.8
Port 1028

IP: 172.16.231.83
Port 1028

TUNIX
172.16.231.8

TCP/IP Protocol Software

Known applications have fixed ports assigned to which each applications can refer when
establishing a connection. The range from 0 to 1023 therefore contains reserved port
numbers. Under no circumstances can these be used for your own applications. The
complete list of „assigned numbers“ can be found in RFC 1700 (1994).

ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers // Ports
http://sunsite.auc.dk/RFC // RFCs

Here is a short list of applications and their port numbers:

Application Port Protocol Description

ftp 21 udp/tcp File Transfer Protocol

telnet 23 udp/tcp Teletype Network

smtp 25 udp/tcp Simple Mail Transfer Protocol

domain 53 udp/tcp Domain Name Server

tftp 69 udp/tcp Trivial File Transfer Protocol

http 80 udp/tcp HyperText Transfer Protocol

sftp 115 udp/tcp Simple File Transfer Protocol

snmp 161 udp/tcp Simple Network Management Protocol

. . .

40

���
� � � � � � � � � �

3.5.2 UDP format

UDP‘s features are limited to separating communications channels of the applications.
UDP does not provide the service of dividing a message into datagrams and reassembling
it at the other end. Specifically, UDP doesn‘t provide sequencing of the packets that the
data arrives in.

This means an Internet application which uses UDP must be able to make sure that the
entire message has arrived and is in the right order. UDP does save „protocol overhead“
and therefore offers higher transmission speeds than TCP. In addition there are no
mechanisms for establishing and releasing a connection.

Format of an UDP datagram header

0 16 31

UDP SOURCE PORT UDP DESTINATION PORT

UDP MESSAGE LENGTH UDP CHECKSUM

DATA

. . .

Source Port: The sender‘s port; needed for relating reply packets back to the correct
connection.

Destination Port: Port to which the source is to send the packet.
Length: Size of the UDP datagram in bytes (header and data).
Checksum: Checksum on the UDP datagram, used only optionally (if not used a

„0“ appears in this field).

3.5.3 TCP – Transport Control Protocol

TCP frees the Internet application from the need for security mechanisms and in contrast
to UDP implements a secure communications channel. This is why virtually all important
Internet applications (HTTP, e-mail etc.) are based on TCP.

The endpoints of a TCP connection form two rows consisting of IP address and port
number. A virtual connection is established between the two endpoints.

Communication is full duplex, which means that both communication partners can send
and receive at the same time.

The protocol is transparent to the application - data brought to the TCP interface also arrive
at the destination unchanged.

Packet sizes are freely selectable. As long as there are no hardware restrictions, anything
from a single byte to several megabytes can be sent.

41

���
� � � � � � � � � �

The format of a TCP packet:

0 4 10 16 24 31

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGMENT NUMBER

HLEN RESERVED CODE BITS WINDOW

CHECKSUM URGENT POINTER

OPTIONS (IF ANY) PADDING

DATA

......

Source Port: Port number for the source application
Destination Port: Port number for the destination application
Sequence No: Usually specifies the number assigned to the first byte of data in the

current message (guarantees proper sequencing)
Acknowl. No: Contains the sequence number of the next byte of data the sender of

the packet expects to receive. (ACK for the received bytes)
HLEN: Size of the TCP header in DWORDs (32 Bit), start of the data area
Code Bits: Indicate the purpose and contents of the packet:

Bit 1: URG segment contains urgent data, see field Urgent Pointer
SOCKET-INTERFACE: out of band data

2: ACK segment contains an Acknowledge

3: PSH push received data immediately

4: RST reset connection

5: SYN open connection and synchronize sequence numbers

6: FIN no further data from sender, close connection

Window: Specifies the size of the sender‘s receive window (that is, the buffer
space for incoming data, starting from the byte shown in the Acknowl.
No. field)

Checksum: Checksum on the TCP datagram and a pseudo-header (indicates
whether the header was damaged in transit)

Urgent Pointer: Points to the first urgent data byte in the packet
Options: Specifies various TCP options (most important: maximum segment

size)

42

���
� � � � � � � � � �

Establishing and closing a connection

TCP uses fixed mechanisms for establishing a connection between client and server.
Establishing a connection also serves to synchronize both ends to make sure each is ready
to transmit data and knows that the other side is ready to transmit as well. Another important
point in this step is the negotiation of transmission parameters such as packet length and
buffer size.

• Establish:

The client sends a packet with the initial sequence number (X) and SYN bit set to
indicate a connection request. Each side synchronizes itself to the Sequence-No. of the
other station.

Client Server

Send Flag SYN
seq = x

Receive Flag SYN

Send Flag SYN+ACK

ack no. = x+1
Receive SYN+ACK

Send Flag ACK
ack = y+1 ACK

SYN

SYN+ACK
sequ.no. = y

In the option Maximum Segment Size each side can specify how many bytes it can
receive in a segment following the TCP header.

• Close:

Either the client or the server can initiate closing of a connection. To do this the FIN
flag is set. Only when both sides have set this flag is the connection considered closed.

Client or Server

Send FIN seq=x Receive FIN

Send FIN seq=y / ACK ack=x+1

Send ACK ack=x+1

Receive ACK

Send ACK ack=y+1

Client or Server

(inform application)

(application closes connection)

Receive FIN+ACK

(application closes
connection) FIN

ACK

FIN

ACK

43

���
� � � � � � � � � �

Flow control

TCP has various mechanisms for ensuring secure and efficient data transmission. Here are
a few of the most important rules:

• The sender must keep all data available until the data have been acknowledged by the
receiver.

• In the case of defective packets (such as packets with an erroneous checksum) the
receiver sends back the last Acknowledgement number, whereupon the sender repeats
the packet.

• If packets are lost, after a timeout the sender resends all the packets which followed the
last received acknowledgement.

• The receiver uses the Window field to indicate for each packet how much buffer space
it has left. If this field contains 0, the sender stops transmitting until it gets a packet
from the receiver showing a Window value greater than zero.

• Since the sender is constantly updated as to the current buffer size of the destination,
it doesn‘t need to wait for the acknowledgement of each individual packet, but rather
can keep sending data until the buffer is full. The receiver is then acknowledging only
a part of the byte-stream and not the individual packets. This means multiple bytes or
packets can be sent without waiting for an acknowledgement. This method is called
sliding window operation.

44

���
� � � � � � � � � �

Bibliography
• INERNET intern

Tischer und Jennrich
Publisher: DATA Becker
ISBN 3-8158-1160-0
(in German, out of print)

• Inside Visual C++
David J. Kruglinski
Publisher: Microsoft Press
ISBN 3-86063-394-5

• Internetworking with TCP/IP
Publisher: PRENTICE HALL

• Volume I: Principles, Protocols and Architecture
Douglas E. Comer
ISBN: 0-13-216987-8

• Volume II: Design, Implementation and Internals
Douglas E. Comer, David L. Stevens
ISBN: 0-13-125527-4

• Volume III: Client-Server Programming and Applications
Douglas E. Comer, David L. Stevens
ISBN: 0-13-260969-X

	Contents
	Part 1 The Socket Interface
	1.1 Client-Server principle
	1.2 Linking socket functions in C
	1.3 The socket variable
	1.4 The main socket functions in C
	1.5 Network order or host order?
	1.6 Database functions
	1.7 Blocking functions
	1.8 Specific functions of the WinSock interface
	1.9 The main structures
	1.10 Streams and datagrams

	Part 2 Program Examples
	2.1 C: DOS environment
	2.1.1 Program example: Socket Client
	2.1.2 Program example: Socket Server
	2.1.3 Program example: UDP Server

	2.2 C application environment: Windows 9x/NT
	2.3 The Visual Basic environment
	2.3.1 Integrating Winsock Control with Visual Basic project
	2.3.2 Explanation of the sample program (TCP Socket Client)

	2.4 Java application environment

	Part 3 TCP/IP Basics
	3.1 IP - Internet Protocol
	3.1.1 The protocol layers of the Internet
	3.1.2 Internet addresses
	3.1.3 The packete format of IP

	3.2 Routing IP packets
	3.3 Subnets
	3.4 ARP and RARP
	3.5 Transport Layer
	3.5.1 Addressing the applications with port numbers
	3.5.2 UDP format
	3.5.3 TCP - Transport Control Protocol

	Bibliography

